3.1.43 \(\int \frac {\sqrt {a x+b x^3}}{x^2} \, dx\) [43]

Optimal. Leaf size=248 \[ \frac {4 \sqrt {b} x \left (a+b x^2\right )}{\left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {a x+b x^3}}-\frac {2 \sqrt {a x+b x^3}}{x}-\frac {4 \sqrt [4]{a} \sqrt [4]{b} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt {a x+b x^3}}+\frac {2 \sqrt [4]{a} \sqrt [4]{b} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt {a x+b x^3}} \]

[Out]

4*x*(b*x^2+a)*b^(1/2)/(a^(1/2)+x*b^(1/2))/(b*x^3+a*x)^(1/2)-2*(b*x^3+a*x)^(1/2)/x-4*a^(1/4)*b^(1/4)*(cos(2*arc
tan(b^(1/4)*x^(1/2)/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x^(1/2)/a^(1/4)))*EllipticE(sin(2*arctan(b^(1/4)*x
^(1/2)/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*x^(1/2)*((b*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/(b*x^3+a*x)^
(1/2)+2*a^(1/4)*b^(1/4)*(cos(2*arctan(b^(1/4)*x^(1/2)/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x^(1/2)/a^(1/4))
)*EllipticF(sin(2*arctan(b^(1/4)*x^(1/2)/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*x^(1/2)*((b*x^2+a)/(a^(1/2
)+x*b^(1/2))^2)^(1/2)/(b*x^3+a*x)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 248, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.353, Rules used = {2045, 2057, 335, 311, 226, 1210} \begin {gather*} \frac {2 \sqrt [4]{a} \sqrt [4]{b} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt {a x+b x^3}}-\frac {4 \sqrt [4]{a} \sqrt [4]{b} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt {a x+b x^3}}-\frac {2 \sqrt {a x+b x^3}}{x}+\frac {4 \sqrt {b} x \left (a+b x^2\right )}{\left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {a x+b x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a*x + b*x^3]/x^2,x]

[Out]

(4*Sqrt[b]*x*(a + b*x^2))/((Sqrt[a] + Sqrt[b]*x)*Sqrt[a*x + b*x^3]) - (2*Sqrt[a*x + b*x^3])/x - (4*a^(1/4)*b^(
1/4)*Sqrt[x]*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticE[2*ArcTan[(b^(1/4)*Sqrt[
x])/a^(1/4)], 1/2])/Sqrt[a*x + b*x^3] + (2*a^(1/4)*b^(1/4)*Sqrt[x]*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqr
t[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[x])/a^(1/4)], 1/2])/Sqrt[a*x + b*x^3]

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 311

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 2045

Int[((c_.)*(x_))^(m_)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a*x^j + b*
x^n)^p/(c*(m + j*p + 1))), x] - Dist[b*p*((n - j)/(c^n*(m + j*p + 1))), Int[(c*x)^(m + n)*(a*x^j + b*x^n)^(p -
 1), x], x] /; FreeQ[{a, b, c}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[p
, 0] && LtQ[m + j*p + 1, 0]

Rule 2057

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[c^IntPart[m]*(c*x)^FracPa
rt[m]*((a*x^j + b*x^n)^FracPart[p]/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p])), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rubi steps

\begin {align*} \int \frac {\sqrt {a x+b x^3}}{x^2} \, dx &=-\frac {2 \sqrt {a x+b x^3}}{x}+(2 b) \int \frac {x}{\sqrt {a x+b x^3}} \, dx\\ &=-\frac {2 \sqrt {a x+b x^3}}{x}+\frac {\left (2 b \sqrt {x} \sqrt {a+b x^2}\right ) \int \frac {\sqrt {x}}{\sqrt {a+b x^2}} \, dx}{\sqrt {a x+b x^3}}\\ &=-\frac {2 \sqrt {a x+b x^3}}{x}+\frac {\left (4 b \sqrt {x} \sqrt {a+b x^2}\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {a+b x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {a x+b x^3}}\\ &=-\frac {2 \sqrt {a x+b x^3}}{x}+\frac {\left (4 \sqrt {a} \sqrt {b} \sqrt {x} \sqrt {a+b x^2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {a x+b x^3}}-\frac {\left (4 \sqrt {a} \sqrt {b} \sqrt {x} \sqrt {a+b x^2}\right ) \text {Subst}\left (\int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a}}}{\sqrt {a+b x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {a x+b x^3}}\\ &=\frac {4 \sqrt {b} x \left (a+b x^2\right )}{\left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {a x+b x^3}}-\frac {2 \sqrt {a x+b x^3}}{x}-\frac {4 \sqrt [4]{a} \sqrt [4]{b} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt {a x+b x^3}}+\frac {2 \sqrt [4]{a} \sqrt [4]{b} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt {a x+b x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.01, size = 51, normalized size = 0.21 \begin {gather*} -\frac {2 \sqrt {x \left (a+b x^2\right )} \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};-\frac {b x^2}{a}\right )}{x \sqrt {1+\frac {b x^2}{a}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a*x + b*x^3]/x^2,x]

[Out]

(-2*Sqrt[x*(a + b*x^2)]*Hypergeometric2F1[-1/2, -1/4, 3/4, -((b*x^2)/a)])/(x*Sqrt[1 + (b*x^2)/a])

________________________________________________________________________________________

Maple [A]
time = 0.35, size = 177, normalized size = 0.71

method result size
default \(-\frac {2 \left (b \,x^{2}+a \right )}{\sqrt {x \left (b \,x^{2}+a \right )}}+\frac {2 \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, \EllipticE \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{\sqrt {b \,x^{3}+a x}}\) \(177\)
risch \(-\frac {2 \left (b \,x^{2}+a \right )}{\sqrt {x \left (b \,x^{2}+a \right )}}+\frac {2 \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, \EllipticE \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{\sqrt {b \,x^{3}+a x}}\) \(177\)
elliptic \(-\frac {2 \left (b \,x^{2}+a \right )}{\sqrt {x \left (b \,x^{2}+a \right )}}+\frac {2 \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, \EllipticE \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{\sqrt {b \,x^{3}+a x}}\) \(177\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^3+a*x)^(1/2)/x^2,x,method=_RETURNVERBOSE)

[Out]

-2*(b*x^2+a)/(x*(b*x^2+a))^(1/2)+2*(-a*b)^(1/2)*((x+1/b*(-a*b)^(1/2))*b/(-a*b)^(1/2))^(1/2)*(-2*(x-1/b*(-a*b)^
(1/2))*b/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2))^(1/2)/(b*x^3+a*x)^(1/2)*(-2/b*(-a*b)^(1/2)*EllipticE(((x+1/b*
(-a*b)^(1/2))*b/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))+1/b*(-a*b)^(1/2)*EllipticF(((x+1/b*(-a*b)^(1/2))*b/(-a*b)^(1/
2))^(1/2),1/2*2^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x)^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(b*x^3 + a*x)/x^2, x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.42, size = 40, normalized size = 0.16 \begin {gather*} -\frac {2 \, {\left (2 \, \sqrt {b} x {\rm weierstrassZeta}\left (-\frac {4 \, a}{b}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, a}{b}, 0, x\right )\right ) + \sqrt {b x^{3} + a x}\right )}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x)^(1/2)/x^2,x, algorithm="fricas")

[Out]

-2*(2*sqrt(b)*x*weierstrassZeta(-4*a/b, 0, weierstrassPInverse(-4*a/b, 0, x)) + sqrt(b*x^3 + a*x))/x

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {x \left (a + b x^{2}\right )}}{x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**3+a*x)**(1/2)/x**2,x)

[Out]

Integral(sqrt(x*(a + b*x**2))/x**2, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x)^(1/2)/x^2,x, algorithm="giac")

[Out]

integrate(sqrt(b*x^3 + a*x)/x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {b\,x^3+a\,x}}{x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x + b*x^3)^(1/2)/x^2,x)

[Out]

int((a*x + b*x^3)^(1/2)/x^2, x)

________________________________________________________________________________________